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Kjære leser!

Årets Abelpris, den sjuende 
i rekken, går til den russisk-
franske matematikeren Mikhail 
Gromov. Blant mange gode 
kandidater falt valget på en dif-
ferensialgeometer fra St. Pe-
tersburg. Gromov er professor 
ved IHÉS i Paris og har et godt 
navn i det matematiske miljøet, 
men er også kjent for teoretiske 
fysikere, ikke minst for Gromov-
Witten-invariantene. 
I dette spesialnummeret av IN-
FOMAT gir vi en utførlig pre-
sentasjon av prisvinneren, hans 
arbeider og også en litt popula-
risert framstilling av fagområ-
dene hvor han har bidratt.
Midt i mars ble den finalen i 
Abelkonkurransen avviklet i 
Trondheim. INFOMAT hilser til 
alle finaledeltakerne og håper 
at konkurransen kan være en 
inspirasjon for dem og alle an-
dre skoleelever til å jobbe hardt 
med sin matematikk. En dag er 
det kanskje noen av dem som får 
de 6 millionene av Kongen!

hilsen Arne B.

INFOMAT kommer ut med 11 nummer i året og gis ut av Norsk Matematisk Forening. Deadline for neste 
utgave er alltid den 10. i neste måned. Stoff til INFOMAT sendes til 

infomat at math.ntnu.no 
Foreningen har hjemmeside http://www.matematikkforeningen.no/INFOMAT 
Ansvarlig redaktør er Arne B. Sletsjøe, Universitetet i Oslo.

ABELPRISEN FOR 2009 ER TILDELT 
MIKHAIL L. GROMOV, IHÉS.
Det norske Videnskaps-akademi har besluttet å tildele Abelprisen 
for 2009 til Mikhail Leonidovich Gromov, IHÉS, Bures-sur-Yvette, 
Frankrike, for hans revolusjonerende bidrag til geometri. Den rus-
sisk-franske matematikeren Mikhail L. Gromov er en av vår tids 
mest betydningsfulle matematikere. Han er kjent for å ha gitt viktige 
bidrag til flere matematiske områder, dog spesielt geometri. Gjennom 
de siste 30 år har Gromov bidratt med dype og originale ideer av stor 
generalitet. Ideer som har gitt oss helt nye perspektiver på geometri 
og andre områder av matematikk.



ARRANGEMENTER

Matematisk kalender
Mars:
26. Abelprisen 2009, offentliggjøring, Oslo
Mai:
4.-10. 4th General conference on advanced mat-
hematical methods in finance, Ålesund
19.-20. Abelprisutdeling, Oslo
Juni:
1.-4. Abelsymposiet, Combinatorial aspects of 
commutative algebra and algebraic geometry, 
Voss
8.-11. Britisk-Nordisk Matematikerkonf., Oslo
15.-17. Marine 2009: 3rd Int. Conf. on Compu-
tational Methods In Marine Engineering, Trond-
heim
22.-26. International conference on spectral and 
higher order methods, Trondheim
August:
10.-14. Homological and geometric methods in 
algebra, Trondheim
Oktober:
12.-17. An international Conference on Stochastic 
Analysis and Applications, Hammamet, Tunisia

ABELSYMPOSIET 2009
Voss, 1.-4. juni 2009

Combinatorial aspects of commuta-
tive algebra and algebraic geometry

Foredragsholdere:
Aaron Bertram, Mats Boij, An-
ders Buch, Aldo Conca, David 
Eisenbud, Sergey Fomin, William 
Fulton, Jürgen Herzog, Joel Kam-
nitzer, Dan Laksov, Diane MacLa-
gan, Ezra Miller, Sam Payne, Ire-
na Peeva, Frank-Olaf Schreyer, 
Jessica Sidman, Mike Stillman, 
Rekha Thomas, Ravi Vakil, Jerzy 
Weyman, Andrei Zelevnisky

4TH GENERAL CONFERENCE 
ON ADVANCED MATHEMATICAL 
METHODS IN FINANCE
Ålesund, 4.-10. mai 2009

Plenary Speakers:
Fred Espen Benth (Oslo), Damiano Brigo 
(UK),
Vasile Brianzanesu (Romania), Umut Çetin 
(UK), Ernst Eberlein, (Tyskland), Lane Hugh-
ston (UK), Claudia Klueppelberg, (Tysk-
land), Damien Lamberton (Frankrike), Tom 
Lindstrøm (Oslo), George C. Papanicolaou 
(USA), Goran Peskir (UK), Eckhard Platen 
(Australia), Marie-Claire Quenez Kammerer 
(Frankrike), Walter Schachermayer (Austral-
ia), Uwe Schmock (Østerrike), Christoph Scha-
wab (Sveits), Halil Mete Soner (Tyrkia), Peter 
Spreij (Nederland), Lukasz Stettner (Polen), 
Johan Tysk (Sverige), Esko Valkeila (Finland), 
Michèle Vanmaele (Belgia), Thaleia Zari-
phopoulou (USA), Xunyu Zhou (UK), 
Frist for registrering, 15. mars 2009.
Organisasjonskomité:
Giulia Di Nunno, Helge Galdal, Bernt Øksen-
dal, Yeliz Yolcu Okur (alle Oslo)

WORKSHOP ON NUMERICAL AS-
PECTS OF NONLINEAR PDES OF 
HYPERBOLIC TYPE, 
Oslo, 26.-27. mai 2009

The workshop is part of the basic research pro-
gram Nonlinear Partial Differential Equations at 
the Centre for Advanced Study at the Norwegian 
Academy of Science and Letters for the academic 
year 2008-09.

Speakers: 
Frédéric Coquel, Bruno Després, Volker Elling, 
James Glimm, Espen Jakobsen, Dietmar Krön-
er,  Peter A. Markowich, Roberto Natalini, An-
dreas Prohl, Anders Szepessy, Eitan Tadmor, 
Anna-Karin Tornberg, Manuel Torrilhon, Ger-
ald Warnecke, Petra Wittbold



NYHETER

Fra instituttene

Nye doktorgraderBRITISK-NORDISKE MATEMA-
TIKERKONGRESS
Oslo, 8.-11. juni 2009

Plenumsforelesere:
Mikael Rørdam, (Operator algebras), Ib Mad-
sen, (Algebraic topology and K-theory), Erkki 
Somersalo, (”Mathematics and the brain”) , Niels 
Peter Jørgensen, (Homological algebra), Mar-
tin Bridson, (Geometric group theory), Dominic 
Joyce, (Differential geometry), Nils Henrik Rise-
bro (Differential equations), Olle Häggström, 
(Probability), Frances Kirwan (Algebraic geom-
etry), Hermann Thorisson (Probability theory) 
Carsten Thomassen, (Graph theory)

HOMOLOGICAL AND GEOMETRIC 
METHODS IN ALGEBRA,
Trondheim 10.-14. august 2009

Mer informasjon på 
http://www.math.ntnu.no/mat/alg/ConfHGMA/

Gjester:
Martin Herrschend er gjest hos professor Idun 
Reiten (algebragruppen) i mars. 
Mahmood Shabankhah er gjest hos professor 
Kristian Seip (analysegruppen).

Inga Baadshaug Eide disputerte for Ph.D- 
graden 20. mars 2009. Tittel på avhandlingen er 
”Small probabilities, large markets and asym-
metric information”.

MARINE 2009: III INTERNATIONAL 
CONFERENCE ON COMPUTATION-
AL METHODS IN MARINE ENGI-
NEERING
Trondheim 15.-17. juni 2009 

Mer informasjon på http://congress.cimne.com/
marine09/frontal/default.asp

INTERNATIONAL CONFERENCE 
ON SPECTRAL AND HIGH ORDER 
METHODS
Trondheim, 22.-26. juni 2009

Mer informasjon på 
http://www.math.ntnu.no/icosahom/

Marius Overholt har forskningstermin og skal 
oppholde seg ett år i Trondheim 2009-
2010.

ABELSTIPEND I SPANIA

Universidad Computense De Madrid, Spania 
utlyser stipend i matematikk og relaterte om-
råder for senior forskere, post doc kandidater 
og doktorgradsstudenter til utveksling og sa-
marbeid mellom spanske og norske forskn-
ingsmiljøer. Stipendiene er for 3-12 måneder.  
Søknadsfrist 23.mai 2009.
Fullstendig utlysning og søknadspapirer finnes 
hos redaksjonen.

NMF UTLYSER ABELSTIPEND

Søknadsfristen for Abelstipend for 2010 er 15. 
april 2009.  Stipendienetildeles masterstu-
denter i matematiske fag, og retningslinjer for 
søknader fins på lenken: http://matematikk-
foreningen.no/abelstipend/



ABELKONKURRANSEN

ABELKOMITEENS BEGRUNNELSE

Det Norske Videnskaps-Akademi har besluttet at 
Abelprisen for 2009 tildeles 

Mikhail Leonidovich Gromov

for hans revolusjonerende bidrag til geometrien.

Geometri er et av matematikkens eldste områder. 
Dette feltet har gjennom århundrene vært gjen-
stand for store matematikeres oppmerksomhet, 
men har i løpet av de siste 50 år gjennomgått rev-
olusjonerende forandringer. Mikhail Gromov har 
stått i spissen for noen av de viktigste landevin-
ningene; han har utviklet dype og usedvanlig 
originale ideer som har ledet til nye perspektiver 
på geometri så vel som på andre deler av matema-
tikken. 

Riemannsk geometri vokste ut av studiet av 
krumme flater og deres høyere-dimensjonale 
motstykker, og har funnet anvendelser for ek-
sempel innen utviklingen av den generelle rela-
tivitetsteorien. Gromov spilte en avgjørende 
rolle i etableringen av moderne global Rie-
mannske geometri. Hans løsninger av viktige 
problemer innen global geometri bygget på nye 
begreper, som konvergens av Riemannske man-
gfoldigheter og et kompakthetsprinsipp. Begge 
disse har av ettertiden fått navn etter Gromov. 

Gromov er en av grunnleggerne av symplektisk 
geometri. Det var kjent at holomorfe kurver var 
et viktig verktøy i studiet av komplekse man-
gfoldigheters geometri. Imidlertid var det også 
klart at integrable komplekse strukturer utgjorde 
et for rigid rammeverk. I en berømt artikkel 
fra 1985 utvidet Gromov begrepet holomorfe 
kurver til J-holomorfe kurver på symplektiske 

Niels Henrik Abels matematikkonkurranse
2008–2009. Resultater

Finale 12. mars 2009

Det ble gitt maksimalt 10 poeng for hver oppgave.

Oppgave
Navn Skole, klasse 1 2 3 4 Sum

1 Andrés Gómez Emilsson Red Cross N. U. W. College (Flekke), ib2 10 10 6 5 31
2 Sondre Kvamme Fana gymnas (Bergen), 3e 10 10 4 5 29
3 Felix T. Prinz Sunnhordland folkehøgskule (Halsnøy), teater 10 4 5 8 27
4 Jarle Stavnes Kristiansand katedralskole Gimle, 3stb 10 5 5 5 25
4 Ailo Aasen Sandnessjøen vgs, ss3b 10 5 5 5 25
6 Sivert Bocianowski Ski vgs, 3stc 10 1 5 5 21
7 Karl Erik Holter Stabekk vgs, 1stb 10 5 2 1 18
7 Gaute Linga Fana gymnas (Bergen), 3f 10 1 2 5 18
9 Georg Alexander Bugge Oslo katedralskole, 3e 9 1 2 5 17
9 Bernt Ivar Nødland Sandnes vgs, 2d 10 2 5 0 17

11 Tony Valle Hammerfest vgs, 2stub 10 0 5 0 15
12 Skjalg Bjørkevoll Sandsli vgs (Bergen), 3d 9 0 5 0 14
12 Hai Do Son Red Cross N. U. W. College (Flekke), ib1 4 0 5 5 14

Videre, alfabetisk:

Knut Blixhavn Tertnes vgs (Bergen), 1stta
Simen Valle Braaten Asker vgs, 2std
Mathias By Adolf Øiens skole (Trondheim), 3a
Sophia Yingyu Cui Tyrifjord vgs (Røyse), 3
Bård Olav S. Holstad Gol vgs, 3stc
Hans Olaf Hågenvik Skeisvang vgs (Haugesund), 3stb
Kasper Sandal Sandsli vgs (Bergen), 3e
Une André Simonsen Vestborg vgs (Stranda), vg1
Andreas Våvang Solbrå Skedsmo vgs (Lillestrøm), 3stc
Brage Sæth Rauma vgs (Åndalsnes), 3st1
Stephen Zhao Trondheim katedralskole, 2iba
Håvard Østensen Bergen katedralskole, 2a

ABELPRISEN 2009



ABELPRISEN 2009

EN LITEN UTDYPING AV 
KOMITEENS BEGRUNNELSE

Riemannsk geometri
Komiteen sier: Gromov spilte en avgjørende 
rolle i etablering av moderne global Riemannsk 
geometri. Hans løsninger av viktige problemer 
innen global geometri bygget på nye begreper, 
som konvergens av Riemannske mangfoldigheter 
og et kompakthetsprinsipp. Begge disse har av 
ettertiden fått navn etter Gromov. 

Riemannsk geometri er oppkalt etter den tyske 
matematikeren Georg Friedrich Bernhard Rie-
mann (1826-1866). Riemann var student av den 
store Carl Friedrich Gauss (1777-1855). 

I forbindelse med sin ansettelse ved universi
tetet fikk Riemann i 1853 i oppdrag av Gauss å 
forberede en prøveforelesning om geometriens 
grunnlag. Riemann jobbet hardt i flere måneder 
og brukte anledningen til å utvikle en teori for 
geometri i høyere dimensjoner. Han holdt fore-
draget i Göttingen i juni 1854, foran et meget 
entusiastisk og imponert publikum. Foredraget 
skulle vise seg å bli et av de viktigste arbeidene 
innen moderne geometri. Tittelen for foredraget 
var Über die Hypothesen welche der Geometrie 
zu Grunde liegen (”Om hypotesene som geome
trien bygger på”), og det ble publisert i artikkel-
form i 1868. Innholdet i dette arbeidet er det vi 
i dag kaller Riemannsk geometri. Riemannsk 
geometri er den delen av differensialgeometri 
som dreier seg om såkalte Riemannske mang-

Georg Friedrich Bernhard Riemann (1826-1866)

mangfoldigheter. Dette ledet til teorien for Gro-
mov-Witten-invarianter, som nå utgjør et ekstremt 
aktivt forskningsområde knyttet til moderne kvan-
tefeltteori. Det ledet også til etableringen av feltet 
symplektisk topologi og har gradvis trengt inn i og 
omformet mange andre områder av matematikken.
 
I sine studier av grupper av polynomiell vekst lan-
serte Gromov ideer som for alltid har forandret vår 
oppfattelse av diskrete uendelige grupper. Gromov 
oppdaget at diskrete grupper kan gis en geometrisk 
tolkning og løste flere problemer av sentral betydn-
ing. Hans geometriske tilnærming gjorde innviklede 
kombinatoriske argumenter mye mer naturlige og 
kraftfulle. 

Mikhail Gromov er alltid på jakt etter nye spørsmål 
og tenker hele tiden på nye ideer som kan bidra 
til å løse store problemer. Han har produsert dypt 
og originalt arbeid gjennom hele sin karriere og er 
fremdeles i besittelse av en usedvanlig skaperkraft. 
Gromovs arbeid vil fortsette å være en kilde til in-
spirasjon for mange fremtidige matematiske oppd-
agelser.
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foldigheter. En Riemannsk mangfoldighet er en 
glatt mangfoldighet utstyrt med en Riemannsk 
metrikk, dvs. et kontinuerlig og glatt varierende 
indreprodukt på tangentrommet i hvert punkt. 
Metrikken gir oss lokale måledata som vinkler, 
buelengder, areal og volum.

Gromov har ført den matematiske arven til Rie-
mann videre. Han introduserte i 1980-årene det 
som nå kalles Gromov-Hausdorff-avstand mellom 
to metriske rom. Avstanden måles ved å legge de 
to rommene inn i et tredje, større rom og så gjøre 
sammenlikningen der. Gromov beviste to funda-
mentale resultater for denne konstruksjonen, et 
prekompakthetsteorem og et konvergensteorem.

Symplektisk geometri
Komiteen sier: Gromov er en av grunnleggerne 
av symplektisk geometri. Det var kjent at holo-
morfe kurver var et viktig verktøy i studiet av 
komplekse mangfoldigheters geometri. Imidler-
tid var det også klart at integrable komplekse 
strukturer utgjorde et for rigid rammeverk. I en 
berømt artikkel fra 1985 utvidet Gromov begrepet 
holomorfe kurver til J-holomorfe kurver på sym-
plektiske mangfoldigheter. Dette ledet til teorien 
for Gromov-Witten-invarianter, som nå utgjør et 
ekstremt aktivt forskningsområde knyttet til mod-
erne kvantefeltteori. Det ledet også til etablerin-
gen av feltet symplektisk topologi og har gradvis 
trengt inn i og omformet mange andre områder av 
matematikken.
Ordet ”symplektisk” er inspirert av ordet ”com-
plex”, og introdusert av Hermann Weyl; tidligere 
hadde ”symplektiske grupper” blitt kalt ”linjekom-
plekse grupper”. Ordet kompleks kommer fra lat-
in com-plexus, som betyr ”flettet sammen” (co- + 
plexus), mens sympektisk kommer fra det tilsvar-
ende greske ordet sym-plektos (συμπλεκτικός); i 
begge tilfeller kommer den siste stavelsen fra den 
indo-europeiske stavelsen *plek-. Navnsettingen 
reflekterer en dyp sammenheng mellom komple-
kse og symplekse strukturer.
Symplektisk geometri er grenen av differensial
geometri hvor objektene som studeres er sym-
plektiske mangfoldigheter. En symplektisk man-
gfoldighet er en differensiabel mangfoldighet 
utstyrt med en lukket, ikke-degenerert 2-form. 
Symplektisk geometri har sin opprinnelse i den 

Hameltonske formalismen for klassisk mekan-
ikk, der faserommet til et bestemt fysisk system 
på en naturlig måte antar en symplektisk struk-
tur. Symplektisk geometri har mange fellestrekk, 
men skiller seg samtidig på vesentlige områder 
fra Riemannsk geometri. I motsetning til det 
Riemannske tilfellet har symplektisk geometri 
ingen lokale invarianter som f.eks. krumning. En 
annen forskjell er at ikke alle mangfoldigheter 
tillater en symplektisk struktur, det er visse to-
pologiske begrensninger. Den viktigste er at en 
symplektisk mangfoldighet må være av jevn di-
mensjon og orienterbar.  Symplektsik geometri 
kalles også symplektisk topologi, selv om sym
plektisk topologi egentlig er det underområdet 
hvor man studerer globale spørsmål innen sym
plektisk geometri. 

Gromov utnyttet eksistensen av en nesten kom-
pleks struktur på symplektiske mangfoldigheter 
til å utvikle teorien for pseudoholomorfe kurver. 
Denne teorien ga støtet til en rekke resultater 
innen symplektisk geometri, bla. oppdagelsen 
av det som nå kalles Gromov-Witten-invari-
anter. Disse invariantene spiller en viktig rolle 
i strengteori.

Grupper med polynomiell vekst
Komiteen sier: I sine studier av grupper av poly
nomiell vekst lanserte Gromov ideer som for 
alltid har forandret vår oppfattelse av diskrete 
uendelige grupper. Gromov oppdaget at diskrete 
grupper kan gis en geometrisk tolkning og løste 
flere problemer av sentral betydning. Hans geo­
metriske tilnærming gjorde innviklede kombina-
toriske argumenter mye mer naturlige og kraft-
fulle. 

Innen gruppeteori betegner begrepet vekstrate 
til en gruppe med hensyn på en symmetrisk 
generatormengde veksten i antall “ord” i gen-
eratorene av økende lengde. Elementene i grup-
pa kan skrives som produkt av generatorer og 
vekstraten sier noe om hvor fort antall elementer 
som kan skrives som et produkt av lengde n øker 
med økende n. 

Gromov beviste følgende teorem:
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Teorem (Gromov 1981). 
En endelig-generert gruppe G har polynomiell 
vekst hvis og bare hvis den er virtuelt nilpotent.

Det å ha polynomiell vekst er en geometrisk 
egenskap ved Cayley-grafen til gruppa, mens det 
å være nilpotent er en rent algebraisk egenskap. 
Det er ikke vanskelig å vise at nesten nilpotente 
grupper har polynomiell vekst; den vanskel-
ige implikasjonen er den motsatte, og Gromov 
trengte å introdusere flere nye geometrisk be-
greper for å bli i stand 
til å oversette den ge-
ometriske informasjo-
nen til algebraiske kon-
klusjoner. Ideene hans 
har i ettertid etablert 
seg som basiskunnskap 
for ulike strategier for å 
løse vanskelige proble-
mer innenfor dette området.

SAGT OM MIKHAIL GROMOV
(og av Mikhail Gromov)

Marcel Berger mente at Mikhail Gromovs arbei-
der bør leses så grundig at sidene til slutt faller 
fra hverandre. 
Dennis Sullivan om Mikhail Gromov: Det er 
ufattelig hva Mikhail Gromov kan få ut av trekan-
tulikheten. 
Fra begrunnelsen for tildelingen av Nemmerspris-
en i matematikk: Mikhail Gromovs arbeider har 
revolusjonert flere grunnleggende delområder av 
moderne geometri.
Fra begrunnelsen for tildelingen av Balzan-
prisen for Matematikk: Prisen går til Mikhail 
Gromov for hans mange originale og dype bidrag 
innen ulike felt av geometri, og for måten han har 
anvendt disse bidragene innen andre områder av 
matematikk og teoretisk fysikk. 
Fra begrunnelsen for tildelingen av Leroy P. Steele 
Prize for Seminal Contribution to Research: 
Mikhail Gromovs artikkel, Pseudo-holomorphic 
curves in symplectic manifolds fra 1985, revo-
lusjonerte fagfeltene symplektisk geometri og 
topologi, og er sentral i mange forskningsfelt, 
bla. kvantekohomologi og speilsymmetri.
Fra begrunnelsen for tildelingen av Kyotoprisen in-
nen matematiske vitenskaper: Mens matematikere 
før han studerte intrinsike egenskaper ved rom 
valgte Mikhail Gromov en helt ny og innova-
tiv angrepsvinkel. Han studerte avstanden mel-
lom ulike rom og klassifiserte dem i “nære” og 
“fjerne”. Det ga opphav til en dypere forståelse 
av rommene selv, siden man nå hadde et verk-
tøy til å sammenligne.Gromov har klart å løse 
mange problemer med denne metoden, spesielt  
de som dreier seg om relasjoner mellom den glo-
bale strukturen til rommet og dets krumning, og i 
hvilken grad rommet er lokalt krumt.
Mikhail Gromov til Marcel Berger: De som 
leser mine arbeider har en tendens til å se på 
korollarene og noen ganger også på det tekniske 
innholdet i bevisene, men det er sjelden de studerer 
papirene så nøye at de får tak i de bakenforliggende 
ideene. 
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EN LITEN OVERSIKT OVER GRO-
MOVS MATEMATIKK

Riemannsk geometri
Gromovs hovedinteresse ligger innenfor fagfeltet 
differensialgeometri. Differensialgeometri er den 
delen av geometri der objektene man studerer er 
glatte og gjerne krumme, slik som kurver, flater 
eller høyere-dimensjonale mangfoldigheter. Ob-
jektene kan gjerne ha en tilleggsstruktur, f.eks. 
en Riemannsk metrikk. En Riemannsk metrikk 
på en flate er akkurat det ekstra verktøyet vi 
trenger for å kunne måle avstander og vinkler på 
flaten. En flate med en Riemannsk metrikk kalles 
en Riemannsk flate. Den vanligste metrikken på 
en flate er den Euklidske metrikken, og bak det 
navnet skjuler seg vårt vanlige avstandsbegrep. 

Men la oss nå forestille oss at flaten er en del av 
et landskap og at metrikken uttrykker hvor tungt 
det er å bevege seg i enhver retning i ethvert 
punkt på flaten. I myrlendt område er verdien av 
metrikken stor sammenliknet med områder med 
fast grunn. Forskjellige verdier av metrikken i 
forskjellige retninger i ett og samme punkt kan 
også forekomme, igjen avhengig av grunnen. En 
avstand mellom to punkter i denne metrikken gir 
oss et uttrykk for hvor lang tid eller hvor mye 
krefter vi bruker på å bevege oss mellom de to 
punktene. 

Et av de mest funda-
mentale begrepene hva 
gjelder Riemannske 
flater er den såkalte 
Gausskrumningen til 
flaten. Begrepet ble først 
studert av Leonhard 
Euler (1707-1783), men 
det var Carl Friedrich 

Gauss (1777-1855) som utviklet teorien. Et plan 
med den vanlige Euklidske metrikken har ingen 
Gausskrumning, mens samme planet med hvor-
vanskelig-er-det-å-gå-metrikken som beskrevet 
ovenfor, kan være ganske krumt! I dag finnes det 
mange krumningsbegreper og -definisjoner, og 
alle har som sin hovedoppgave å måle hvor langt 
et rom er fra å være flatt.
Gausskrumningen i et punkt på en flate er definert 
som produktet av hovedkrumningene i punktet, 
summen av dem kalles middelkrumningen. Hoved-
krumningene er maksimums og minimumsverdi-
ene av krumningen til de plane kurvene vi får når 
vi snitter flaten med plan som står normalt på tan-
gentplanet i punktet. 
De viktigste egenskapene til en flate er de som er 
definert intrinsikt, dvs. definert kun gjennom av-
stander på flaten som er målt langs kurver på flaten. 
Flater blir ofte definert som grafen til en funksjon 
i to variable og før Gauss definerte man krumn-
ing ved hjelp av denne funksjonen. Egenskaper 
ved flaten som er definert på denne måten kalles 
ekstrinsike, det motsatte av intrinsike. Gauss viste 
i sitt Theorema Egregium (“Oppsiktsvekkende 
teorem”) at til tross for den opprinnelige ekstrin-
sike definisjonen, så er 
Gausskrumning en 
intrinsik egenskap. 
Bernhard Riemann 
(1826-1866) general-
iserte dette til høyere 
dimensjoner og la 
med det grunnlaget 
for det som i dag ka-
lles Riemannsk ge-
ometri.
Den franskitalienske 
matematikeren Joseph-
Luis Lagrange (1736-1813) stilte i 1760 følgende 
spørsmål: Gitt en lukket kurve i rommet, hvordan 
ser flaten ut som har denne kurven som sin rand 
og som har minimalt areal? En slik flate kalles 
en minimalflate. Svaret på spørsmålet ble gitt av 
den litt mer ukjente matematikeren Jean Baptiste 
Meusnier (1754-1793) 16 år senere. Han viste at 
en flate er minimal hvis og bare hvis middelkrum-
ningen til flaten er 0. Minimalflater opptrer på en 
naturlig måte i naturen. Ved å dyppe en ståltråd 
formet som den aktuelle kurven ned i såpevann, 



vil såpefilmen som dannes når vi tar tråden opp 
av vannet beskrive minimalflaten som svarer på 
spørsmålet.
Kurver på en flate som er slik at de danner den 
korteste veien mellom sine endepunkter kalles 
geodesiske kurver. De svarer til rette linjer i et 
euklidsk rom. Matematisk beskrives de gjennom 
partielle differensiallikninger som oppstår fra 
såkalt variasjonsregning og de er intrinsikt de-
finert, dvs. uavhengig av rommet som flaten er 
puttet inn i.
En måte å definere Gausskrumning i et punkt er å 
se på grenseverdien for kvotienten av avviket mel-
lom vinkelsummen α + β + γ  og π, og arealet av 
sukssesivt mindre og mindre geodesiske trekant-
er, med vin-
kler α, β, γ og 
som omslut-
ter punktet. 
Kval i ta t iv t 
sier vi at flat-
en er positivt 
eller negativt 
krummet i 
henhold til 
tegnet på dif-
ferensen α + 
β + γ – π for 
små trekanter. En kuleflate har overalt positiv 
krumning siden vinkelsummen i en trekant på 
jordoverflaten er større enn π, mens plangeometri 
ikke krummer siden vinkelsummen som kjent er 
π eller 180 grader i det tilfellet.
Siden en Riemannsk flate har en veldefinert 
krumning i hvert eneste punkt, har det mening 
å summere opp alle krumningene for å finne 
gjennomsnittskrumningen for hele flaten, eller 

totalkrumningen som den kalles i litteraturen. 
Totalkrumningen er beskrevet i et vakkert re-
sultat, kjent som Gauss-Bonnet-teoremet. Re-
sultatet sier at totalkrumningen kan beregnes 
kun ved hjelp av topologiske egenskaper til flat-

en, dvs. uten verken å kjenne 
krumning eller metrikk. For 
en lukket flate, slik som 
kuleflaten eller overflaten til 
en smultring, kjent som en 
torus, sier Gauss-Bonnet at 
den totale krumningen er lik 
4π minus 4π ganger antall 

hull i flaten. Kuleflaten har ingen hull og den 
totale krumningen er derfor lik 4π, for øvrig 
samme tall som arealet til kuleflaten når radius 
er satt til å være 1. Torusen har ett hull og den 
totale krumningen er derfor 0. Denne relasjonen 
mellom det lokale begrepet krumning og det 
globale begrepet antall hull har vært forløper 
for mange viktige resultater i geometri, med 
Atiyah-Singers indeksteorem som det absolutte 
høydepunkt. Michael Atiyah og Isadore Singer 
fikk Abelprisen for dette resultatet i 2004.
Etter hvert som man utvikler mer matematikk 
dukker det opp nye spørsmål og problemstill-
inger. I den gaten vi nå er inne i kom raskt 
spørsmålene opp om hva slags flater det er 
mulig å konstruere dersom vi krever at krum-
ningen er null overalt, eller hvis den er konstant 
og positiv eller konstant og negativ? Svarene 
på disse spørsmålene vil hjelpe oss med å klas-
sifisere alle flater. Mikhail Gromov har vært 
en svært aktiv bidragsyter i dette arbeidet og 
har gjennom sine resultater på en fremragende 
måte styrket vår kunnskap om flater og høyere-
dimensjonale mangfoldigheter.
Riemannske geometere begrenser seg på ingen 
måte til å studere flater. Universet vårt kan be-
skrives som et tre-dimensjonalt rom. I nærheten 



ABELPRISEN 2009

av jorda ser dette rommet ut som et Euklidsk rom, 
dvs. at rette linjer er rette linjer, hvis vi kan formu-
lere det slik. Andre steder i universet, i nærheten 
av kjempestjerner eller sorte hulle er dette langt i 
fra tilfellet. Gjennom Hubble-teleskopet har man 
observert fjerne punkter hvor det ikke bare er én 
geodesisk kurve mellom punktene og Hubble-tel-
eskopet, men et helt knippe av slike. Dette kalles 
gravitasjonal brytning og er en avansert form for 
dobbelsyn. Ett og samme punkt opptrer tilsynela-
tende flere ganger på himmelhvelven når vi ser 
på det i teleskopet. Bakgrunnen for fenomenet er 
at vårt rom er krumt og ved å kombinere astrono-
miske observasjoner med teoretiske resultater fra 
Riemannsk geometri kan vi beregne størrelsen 
på denne krumningen. Astronomene forestiller 
seg at krumningen 
av rommet er re-
latert til gravitas-
jonsfeltene rundt 
kjempestjernene 
eller de sorte hul-
lene i henhold til 
en partiell differ-
ensiallikning in-
trodusert av Albert 
Einstein (1870-
1955). Dermed kan 
man faktisk bereg-
ne massen til de sorte hullene som forårsaker den 
gravitasjonale brytningen.
Som nevnt ovenfor kan man lage mange forskjel-
lige metriske strukturer på én og samme flate. 
Gromov stilte seg spørsmålet om det er mulig å 
finne alle slike strukturer og til og med gi denne 
mengden noen form for struktur. Svaret hans er at 
mengden av alle metriske rom selv er et metrisk 
rom. Vi kan altså definere en avstand mellom to 
ulike metriske rom. Gromov gjør dette ved å legge 
de to rommene vi skal sammenlikne inn i et felles 

større rom og så måler han 
avstanden mellom dem 
der. Avstanden mellom to 
kompakte delmengder av et 
metrisk rom er gitt som den 
minste lengden som er slik 
at vi fra et vilkårlig punkt 
i den ene mengden alltid 
kan nå den andre mengden. 

Gromov-Hausdorff-avstanden mellom to me-
triske rom er akkurat denne minste lengden 
når vi optimaliserer det å legge rommene inn i 
et tredje større rom. Som et eksempel kan vi se 
på to sirkler med radius 1 og 2. Det er mange 
måter å tegne disse sirklene på et ark, men lar 
vi de få felles sentrum så vil avstanden mel-
lom dem være 1. Fra et hvert punkt på den ene 
sirkelen kan vi nå den andre med en rett linje 
av lengde 1. Dermed blir Gromov-Hausdorff-
avstanden mellom de to sirklene lik 1. Rundt 
1980 publiserte Gromov en rekke resultater 
om det metriske rommet av metriske rom. To 
av resultatene bærer også hans navn, Gromovs 
kompakthetsteorem og Gromovs konvergen-
steorem.

Symplektisk geometri
I 1833 introduserte den irske matematikeren 
William Rowan Hamilton (1805-1865) det 
som i dag kalles Hamiltonsk mekanikk. Det er 
en måte å reformulere klassisk mekanikk etter 
Newton, motivert av en tidligere reformuler-
ing som Lagrange sto for i 1788. For Lagrange 
var klassisk mekanikk gitt som løsningen av 
en bestemt andre-ordens differensiallikning på 
et aktuelt koordinatrom. Hamilton endret for-
malismen, ved at han så på to sett av koordi-
nater, posisjon og momentum, med hvert sitt 
sett av koordinater. Lagranges andre-ordens 
differensiallikning på et n-dimensjonalt rom 
ble nå erstattet av to første-ordens likninger på 
et 2n-dimensjonalt faserom. Egenskaper ved 
dette faserommet ble rendyrket og brukt som 
motivasjon til å definere sympektiske man-
gfoldigheter. Eller i matematisk språkdrakt, 
som mangfoldigheter utstyrt med en ikke-de-
generert lukket differensiabel 2-form.
Det er nære forbindelseslinjer mellom sym-
plektiske strukturer og det som kalles nesten 
komplekse strukturer. Sammenhengen ligger i 
spørsmålet; er det mulig å forstå en 2n-dimen-
sjonal reell mangfoldighet som en n-dimen-
sjonal kompleks mangfoldighet, på samme 
måte som de komplekse tallene kan oppfattes 
som et to-dimensjonalt reelt rom?
La oss dvele litt ved en liten digresjon, pin-
neleken til velkjente Ole Brumm. Sammen 
med vennene sine kaster han pinner i elva fra 
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den ene siden av brua og så løper de til den andre 
siden for å se hvilken pinne som kommer først. 
Strømmen i elva kan beskrives ved et bestemt vek-
torfelt, til hvert punkt på vannoverflaten tilordner 
vi en vektor som beskriver strømmens retning og 
styrke. Pinnene følger 
dette vektorfeltet 
langs det som kalles 
integralkurver. For 
Ole Brumm er det om 
å gjøre å finne den 
raskeste veien, eller i 
det minste en raskere 
vei enn det Christo-
pher Robin, Tiger-
gutt og Tussi finner. 
Uansett er det opplagt 
at pinnen finner veien 
til den andre siden av 
brua. Grunnen til det er at strøm-vektorfeltet har 
helt spesielle, og meget hensiktsmessige egenska-
per. Vi kan etterape disse egenskapene, i fagter-
minologien kalt Cauchy-Riemanns likninger, og 
anvende dem på det symplektiske faserommet for 
Hamiltonformalismen vi beskrev over. Det vi da 
får er en spesiell måte å legge de komplekse tallene 
inn i en symplektisk mangfoldighet; de beskriver 
en type kurver som kalles J-kurver eller pseudo-
holomorfe kurver. Disse kurvene ble introdusert av 
Gromov i 1985 og revolusjonerte studiet av sym-
plektiske mangfoldigheter. Spesielt ga de opphav 
til Gromov-Witten-invarianter og Floer-homologi 
og spiller en prominent rolle i strengteori, kanskje 
det hotteste feltet i teoretisk fysikk de siste årene.

Geometriske grupper
I begrunnelsen for årets Abelpristildeling legger 

den faglige komiteen spesielt vekt på tre om-
råder hvor geometeren Gromov har spilt en 
framtredende rolle. Riemannsk og symplektisk 
geometri kan man forstå hører med til tumle-
plassen for en av verdens ledende geometere, 
men hva har polynomial vekst av grupper med 
geometri å gjøre? 
Vi skal avdekke en forbindelse, og vi begyn-
ner med å stille spørsmålet om hvor mange ord 
språket vårt inneholder? Det er selvfølgelig in-
gen god ide å starte å telle ord i et språk, men 
likevel, la oss forsøke. Vi starter med å betrakte 
ord av lengde 1, slik som i, ø og å. Hvis vi er litt 
strenge med hva vi mener med et ord så er det 
vel ikke flere enn disse. Lista over ord av lengde 
to er mye lenger; vi har to, ku, så, ta og hi for 
å nevne noen. Vi skal ikke fortsette på disse 
listene, vi skal heller forandre spillereglene og 
fokusere på et språk som viser seg å inneholde 
en veldig viktig matematisk konstruksjon. Her 
er reglene:

1. Alfabetet inneholder kun to bok-
staver, x og y.
2.	 Alle kombinasjoner av x´er og y´er 
er ord i dette språket, med to unntak, 
kombinasjonene xx og yyy skal ikke 
forkomme.

La oss nå telle antall ord i ordboken. Vi teller 
opp ord av samme lengde, og begynner med 1. 
I tabellen under har vi listet alle de korteste or-
dene, sortert etter lengde. La nå W(n) betegne 
antall ord av lengde n. Et elementært kombina-
torisk argument (som vi utelater av plasshen-
syn) gir at W(n) er lik summen W(n-1)+W(n-5). 
Det gir oss en enkel oppskrift på å fortsette den 

Lengde Ord W(n)
1 x,y 2
2 xy, yx, yy 3
3 xyx, yyx, yxy, xyy 4
4 xyxy, xyyx, yxyx, yxyy, yyxy 5
5 xyxyx, xyxyy, xyyxy, yx¬yxy, yxyyx, yyxyx, yyxyy 7
6 xyxyxy, xyxyyx, xyyxyx, xyyxyy, yxyxyx, yxyxyy, yxyyxy, yyxyxy, yyxyyx 9
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høyre tallrekken i tabellen: 2,3,4,5,7,9,12,16,21
,28,37,49,65,... Denne tallfølgen har eksponen-
tiell vekst. Det motsatte av eksponentiell vekst 
er i denne forbindelse polynomial vekst. Poly-
nomial vekst er mye langsommere enn ekspo-
nentiell vekst, f.eks. har følgen av naturlige tall, 
1,2,3,4,5,6,7,... polynomial vekst. 
Språket som vi har beskrevet over er det som i 
matematisk terminologi kalles elementene i den 
Projektive modulære gruppa, PSL(2,Z). Det vi 
har vist, eller i det minste antydet, er at denne 
gruppa har eksponensiell vekst. La oss minne om 
Gromovs resultat fra 1981: 

Teorem (Gromov, 1981)
En endelig generert gruppe G har polynomial 
vekst hvis og bare hvis gruppa er virtuelt nilpo-
tent.

Ved å bruke dette resultatet kan vi nå utlede at 
den projektive modulære gruppa ikke er virtuelt 
nilpotent. Dvs. at den ikke inneholder en nilpo-
tent undergruppe av endelig indeks. For grup-
peteoretikere er det viktig å vite om en gruppe 
er virtuelt nilpotent eller ikke. Det vi ønsker å 
fortelle med dette er at ved å kombinere enkel 
telling med Gromovs resultat kan vi uttale oss 
om betydningsfulle egenskaper til PSL(2,Z), en 
av de mest berømte gruppene i moderne matem-
atikkhistorie.
Så tilbake til vårt opprinnelige spørsmål, om hva 
dette har med geometri å gjøre. Det er faktisk en 
metrikk gjemt i vårt språk-eksempel. Begrepet 
avstand har to helt grunnleggende egenskaper 
som vi ikke får lov å fravike, trekantulikheten 
og ekvivalensen mellom null-avstand og likhet. 
Trekantulikheten er en generalisering av det mer 
folkelige utsagnet om at den korteste veien mel-
lom to punkter er den rette linje. Ekvivalensen 
mellom null-avstand og likhet sier at dersom det 
ikke er noen avstanden mellom to punkter så er 
de like. I det omtalte språket har det mening å 
sette sammen ord, ved å sette dem etter hveran-
dre. Det at xx og yyy ikke er tillatt skal vi forstå 
dithen at dersom vi setter sammen to ord og en av 
disse kombinasjonene blir resultatet i ”skjøten”, 
så stryker vi dem. For eksempel vil sammenset-
ningen av xyx og xyyx gi xyxxyyx=xyyyx=xx=Ø 
(vi kaller det tomme ordet for Ø). Vi må også 

kunne invertere et ord, det gjør vi ved å snu or-
det bak fram og erstatte yy med y og omvendt; 
for eksempel vil den inverse til xyyxy være 
yyxyx. Den oppsiktsvekkende erkjennelsen er 
nå at mengden av ord i dette alfabetet på en 
naturlig måte former et metrisk rom. Avstand-
en mellom to ord definerer vi ved å sette sam-
men det ene ordet med den inverse av det an-
dre og så telle opp antall bokstaver i resultatet. 
Denne definisjonen respekterer både trekantu-
likheten og ekvivalensen mellom null-avstand 
og likhet. Opptelling av punkter innen en gitt 
avstand fra det tomme ordet er i perfekt analo-
gi med det å beregne arealet av sirkler med 
den samme avstanden fra et bestemt punkt på 
en flate. Areal er en kvadratisk funksjon i ra-
diusen, dvs. for flater har vi polynomial vekst 
av grad 2. Tilsvarende argument kan vi bruke 
for generelle Riemannske mangfoldigheter av 
høyere dimensjon, dersom dimensjonen er d 
vil veksten i volum i d-baller om et punkt være 
en polynomial funksjon av grad d i radiusen til 
ballen. Igjen har vi polynomial vekst. Gromovs 
resultat kan i denne sammenhengen oppfattes 
å uttale seg om egenskaper ved algebraiske ob-
jekter svarende til endelig-dimensjonale man-
gfoldigheter.

Epilog
Gromovs navn er for alltid knyttet opp mot 
dype resultater og viktige begreper innen 
Riemannsk geometri, symplektisk geometri, 
strengteori og gruppeteori. Abelkomiteen sier 
i sin begrunnelse: ”Mikhail Gromov er alltid 
på leting etter nye spørsmål og etter nye svar 
på gamle spørsmål. Han har gjennom hele sin 
karriere produsert dype og originale arbeider 
og han er fortsatt bemerkelsesverdig aktiv. 
Gromovs arbeider vil fortsette å være en kil-
de til inspirasjon for framtidige matematiske 
oppdagelser.” Gromov er matematikeren som 
får store resultater ut av 
enlke ideer.  Som Den-
nis Sullivan så treffend 
uttaler: ”Det er utrolig 
hva Mikhail Gromov 
kan få ut av trekantu-
likheten!”


