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Kjcere leser!

Arets Abelpris, den sjuende
i rekken, gar til den russisk-
franske matematikeren Mikhail
Gromov. Blant mange gode
kandidater falt valget pa en dif-
ferensialgeometer fra St. Pe-
tersburg. Gromov er professor
ved IHES i Paris og har et godt
navn i det matematiske miljgpet,
men er ogsd kjent for teoretiske
[ysikere, ikke minst for Gromov-
Witten-invariantene.

I dette spesialnummeret av IN-
FOMAT gir vi en utfprlig pre-
sentasjon av prisvinneren, hans
arbeider og ogsa en litt popula-
risert framstilling av fagomrd-
dene hvor han har bidratt.

Midt i mars ble den finalen i
Abelkonkurransen avviklet i
Trondheim. INFOMAT hilser til
alle finaledeltakerne og hdaper
at konkurransen kan veere en
inspirasjon for dem og alle an-
dre skoleelever til a jobbe hardt
med sin matematikk. En dag er
det kanskje noen av dem som far
de 6 millionene av Kongen!

hilsen Arne B.
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ABELPRISEN FOR 2009 ER TILDELT
MIKHAIL L. GROMOYV, IHES.

Det norske Videnskaps-akademi har besluttet a tildele Abelprisen
for 2009 til Mikhail Leonidovich Gromov, IHES, Bures-sur-Yvette,
Frankrike, for hans revolusjonerende bidrag til geometri. Den rus-
sisk-franske matematikeren Mikhail L. Gromov er en av var tids
mest betydningsfulle matematikere. Han er kjent for a ha gitt viktige
bidrag til flere matematiske omrader, dog spesielt geometri. Gjennom
de siste 30 ar har Gromov bidratt med dype og originale ideer av stor
generalitet. [deer som har gitt oss helt nye perspektiver pa geometri
og andre omrader av matematikk.

INFOMAT kommer ut med 11 nummer i aret og gis ut av Norsk Matematisk Forening. Deadline for neste
utgave er alltid den 10. i neste maned. Stoff til INFOMAT sendes til

infomat at math.ntnu.no

Foreningen har hjemmeside http://www.matematikkforeningen.no/INFOMAT
Ansvarlig redaktgr er Arne B. Sletsjge, Universitetet 1 Oslo.



ARRANGEMENTER

Matematisk kalender

Mars:

26. Abelprisen 2009, offentliggjpring, Oslo
Mai:

4.-10. 4th General conference on advanced mat-
hematical methods in finance, Alesund

19.-20. Abelprisutdeling, Oslo

Juni:

1.-4. Abelsymposiet, Combinatorial aspects of
commutative algebra and algebraic geometry,
Voss

8.-11. Britisk-Nordisk Matematikerkonf., Oslo
15.-17. Marine 2009: 3rd Int. Conf. on Compu-
tational Methods In Marine Engineering, Trond-
heim

22.-26. International conference on spectral and
higher order methods, Trondheim

August:

10.-14. Homological and geometric methods in
algebra, Trondheim

Oktober:

12.-17. An international Conference on Stochastic
Analysis and Applications, Hammamet, Tunisia

WORKSHOP ON NUMERICAL AS-
PECTS OF NONLINEAR PDES OF
HYPERBOLIC TYPE,

Oslo, 26.-27. mai 2009

The workshop is part of the basic research pro-
gram Nonlinear Partial Differential Equations at
the Centre for Advanced Study at the Norwegian
Academy of Science and Letters for the academic
year 2008-09.

Speakers:

Frédéric Coquel, Bruno Després, Volker Elling,
James Glimm, Espen Jakobsen, Dietmar Kron-
er, Peter A. Markowich, Roberto Natalini, An-
dreas Prohl, Anders Szepessy, Eitan Tadmor,
Anna-Karin Tornberg, Manuel Torrilhon, Ger-
ald Warnecke, Petra Wittbold

4TH GENERAL CONFERENCE
ON ADVANCED MATHEMATICAL
METHODS IN FINANCE

Alesund, 4.-10. mai 2009

Plenary Speakers:

Fred Espen Benth (Oslo), Damiano Brigo
(UK),

Vasile Brianzanesu (Romania), Umut Cetin
(UK), Ernst Eberlein, (Tyskland), Lane Hugh-
ston (UK), Claudia Klueppelberg, (Tysk-
land), Damien Lamberton (Frankrike), Tom
Lindstregm (Oslo), George C. Papanicolaou
(USA), Goran Peskir (UK), Eckhard Platen
(Australia), Marie-Claire Quenez Kammerer
(Frankrike), Walter Schachermayer (Austral-
ia), Uwe Schmock (Osterrike), Christoph Scha-
wab (Sveits), Halil Mete Soner (Tyrkia), Peter
Spreij (Nederland), Lukasz Stettner (Polen),
Johan Tysk (Sverige), Esko Valkeila (Finland),
Michele Vanmaele (Belgia), Thaleia Zari-
phopoulou (USA), Xunyu Zhou (UK),

Frist for registrering, 15. mars 2009.
Organisasjonskomité:

Giulia Di Nunno, Helge Galdal, Bernt Qksen-
dal, Yeliz Yolcu Okur (alle Oslo)

ABELSYMPOSIET 2009
Voss, 1.-4. juni 2009

Combinatorial aspects of commuta-
tive algebra and algebraic geometry

Foredragsholdere:

Aaron Bertram, Mats Boij, An-
ders Buch, Aldo Conca, David
Eisenbud, Sergey Fomin, William
Fulton, Jiirgen Herzog, Joel Kam-
nitzer, Dan Laksov, Diane MacLa-
gan, Ezra Miller, Sam Payne, Ire-
na Peeva, Frank-Olaf Schreyer,
Jessica Sidman, Mike Stillman,
Rekha Thomas, Ravi Vakil, Jerzy
Weyman, Andrei Zelevnisky ~
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NYHETER

BRITISK-NORDISKE MATEMA-
TIKERKONGRESS
Oslo, 8.-11. juni 2009

Plenumsforelesere:

Mikael Rgrdam, (Operator algebras), Ib Mad-
sen, (Algebraic topology and K-theory), Erkki
Somersalo, ("Mathematics and the brain”) , Niels
Peter Jogrgensen, (Homological algebra), Mar-
tin Bridson, (Geometric group theory), Dominic
Joyce, (Differential geometry), Nils Henrik Rise-
bro (Differential equations), Olle Higgstrom,
(Probability), Frances Kirwan (Algebraic geom-
etry), Hermann Thorisson (Probability theory)
Carsten Thomassen, (Graph theory)

MARINE 2009: III INTERNATIONAL
CONFERENCE ON COMPUTATION-
AL METHODS IN MARINE ENGI-
NEERING

Trondheim 15.-17. juni 2009

Mer informasjon pa http://congress.cimne.com/
marine09/frontal/default.asp

INTERNATIONAL CONFERENCE
ON SPECTRAL AND HIGH ORDER
METHODS

Trondheim, 22.-26. juni 2009

Mer informasjon pa
http://www.math .ntnu.no/icosahom/

HOMOLOGICAL AND GEOMETRIC
METHODS IN ALGEBRA,
Trondheim 10.-14. august 2009

Mer informasjon pa
http://www.math.ntnu.no/mat/alg/ConfHGMA/

Nye doktorgrader

Inga Baadshaug Eide disputerte for Ph.D-
graden 20. mars 2009. Tittel pa avhandlingen er
”Small probabilities, large markets and asym-
metric information” .

Fra instituttene

Gjester:

Martin Herrschend er gjest hos professor Idun
Reiten (algebragruppen) i mars.

Mahmood Shabankhah er gjest hos professor
Kristian Seip (analysegruppen).

@ NTNU

Marius Overholt har forskningstermin og skal
oppholde seg ett ar i Trondheim 2009-
2010.
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ABELSTIPEND I SPANIA

Universidad Computense De Madrid, Spania
utlyser stipend 1 matematikk og relaterte om-
rader for senior forskere, post doc kandidater
og doktorgradsstudenter til utveksling og sa-
marbeid mellom spanske og norske forskn-
ingsmiljeer. Stipendiene er for 3-12 maneder.
Seknadsfrist 23.mai 2009.

Fullstendig utlysning og seknadspapirer finnes
hos redaksjonen.

NMF UTLYSER ABELSTIPEND

Seknadsfristen for Abelstipend for 2010 er 15.
april 2009. Stipendienetildeles masterstu-
denter 1 matematiske fag, og retningslinjer for
soknader fins pd lenken: http://matematikk-
foreningen.no/abelstipend/



ABELKONKURRANSEN

Niels Henrik Abels matematikkonkurranse
2008-2009. Resultater

Finale 12. mars 2009

Det ble gitt maksimalt 10 poeng for hver oppgave.

Oppgave

Navn Skole, klasse 1 2 3 4 Sum

1 Andrés Gémez Emilsson Red Cross N. U. W. College (Flekke), ib2 10 10 6 5 31

2 Sondre Kvamme Fana gymnas (Bergen), 3e 10 10 4 5 29

3 Felix T. Prinz Sunnhordland folkehggskule (Halsngy), teater 10 4 5 8 27

4 Jarle Stavnes Kristiansand katedralskole Gimle, 3stb 10 5 5 5 25

4 Ailo Aasen Sandnessjgen vgs, ss3b 100 5 5 5 25

6 Sivert Bocianowski Ski vgs, 3stc 10 1 5 5 21

7 Karl Erik Holter Stabekk vgs, 1stb 10 5 21 18

7 Gaute Linga Fana gymnas (Bergen), 3f 10 1 2 5 18

9 Georg Alexander Bugge Oslo katedralskole, 3e 9 1 2 5 17

9 Bernt Ivar Ngdland Sandnes vgs, 2d 10 2 5 0 17

11  Tony Valle Hammerfest vgs, 2stub 100 0 5 0 15
12 Skjalg Bjgrkevoll Sandsli vgs (Bergen), 3d 9 050 14
12 Hai Do Son Red Cross N. U. W. College (Flekke), ibl 4 0 5 5 14

ABELPRISEN 2009

ABELKOMITEENS BEGRUNNELSE

Det Norske Videnskaps-Akademi har besluttet at
Abelprisen for 2009 tildeles

Mikhail Leonidovich Gromov

for hans revolusjonerende bidrag til geometrien.

Geometri er et av matematikkens eldste omréder.
Dette feltet har gjennom &rhundrene vert gjen-
stand for store matematikeres oppmerksomhet,
men har i lopet av de siste 50 ar gjennomgatt rev-
olusjonerende forandringer. Mikhail Gromov har
statt 1 spissen for noen av de viktigste landevin-
ningene; han har utviklet dype og usedvanlig
originale ideer som har ledet til nye perspektiver
pa geometri sd vel som pd andre deler av matema-
tikken.

Riemannsk geometri vokste ut av studiet av
krumme flater og deres heyere-dimensjonale
motstykker, og har funnet anvendelser for ek-
sempel innen utviklingen av den generelle rela-
tivitetsteorien. Gromov spilte en avgjerende
rolle i etableringen av moderne global Rie-
mannske geometri. Hans losninger av viktige
problemer innen global geometri bygget pd nye
begreper, som konvergens av Riemannske man-
gfoldigheter og et kompakthetsprinsipp. Begge
disse har av ettertiden fitt navn etter Gromov.

Gromov er en av grunnleggerne av symplektisk
geometri. Det var kjent at holomorfe kurver var
et viktig verktey i studiet av komplekse man-
gfoldigheters geometri. Imidlertid var det ogsa
klart at integrable komplekse strukturer utgjorde
et for rigid rammeverk. I en beremt artikkel
fra 1985 utvidet Gromov begrepet holomorfe
kurver til J-holomorfe kurver pa symplektiske
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mangfoldigheter. Dette ledet til teorien for Gro-
mov-Witten-invarianter, som né utgjor et ekstremt
aktivt forskningsomrade knyttet til moderne kvan-
tefeltteori. Det ledet ogsa til etableringen av feltet
symplektisk topologi og har gradvis trengt inn i og
omformet mange andre omrader av matematikken.

I sine studier av grupper av polynomiell vekst lan-
serte Gromov ideer som for alltid har forandret vér
oppfattelse av diskrete uendelige grupper. Gromov
oppdaget at diskrete grupper kan gis en geometrisk
tolkning og leste flere problemer av sentral betydn-
ing. Hans geometriske tilnerming gjorde innviklede
kombinatoriske argumenter mye mer naturlige og
kraftfulle.

Mikhail Gromov er alltid pé jakt etter nye spersmaél
og tenker hele tiden pd nye ideer som kan bidra
til & lose store problemer. Han har produsert dypt
og originalt arbeid gjennom hele sin karriere og er
fremdeles 1 besittelse av en usedvanlig skaperkraft.
Gromovs arbeid vil fortsette & vaere en kilde til in-
spirasjon for mange fremtidige matematiske oppd-
agelser.

EN LITEN UTDYPING AV
KOMITEENS BEGRUNNELSE

Riemannsk geometri

Komiteen sier: Gromov spilte en avgjgrende
rolle i etablering av moderne global Riemannsk
geometri. Hans lpsninger av viktige problemer
innen global geometri bygget pa nye begreper,
som konvergens av Riemannske mangfoldigheter
og et kompakthetsprinsipp. Begge disse har av
ettertiden fatt navn etter Gromov.

Riemannsk geometri er oppkalt etter den tyske
matematikeren Georg Friedrich Bernhard Rie-
mann (1826-1866). Riemann var student av den
store Carl Friedrich Gauss (1777-1855).

Georg Friedrich Bernhard Riemann (1826-1866)

I forbindelse med sin ansettelse ved universi-
tetet fikk Riemann i 1853 i oppdrag av Gauss
forberede en prgveforelesning om geometriens
grunnlag. Riemann jobbet hardt i flere maneder
og brukte anledningen til & utvikle en teori for
geometri 1 hgyere dimensjoner. Han holdt fore-
draget 1 Gottingen 1 juni 1854, foran et meget
entusiastisk og imponert publikum. Foredraget
skulle vise seg a bli et av de viktigste arbeidene
innen moderne geometri. Tittelen for foredraget
var Uber die Hypothesen welche der Geometrie
zu Grunde liegen (”Om hypotesene som geome-
trien bygger pd”), og det ble publisert i artikkel-
form 1 1868. Innholdet i dette arbeidet er det vi
1 dag kaller Riemannsk geometri. Riemannsk
geometri er den delen av differensialgeometri
som dreier seg om sakalte Riemannske mang-
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foldigheter. En Riemannsk mangfoldighet er en
glatt mangfoldighet utstyrt med en Riemannsk
metrikk, dvs. et kontinuerlig og glatt varierende
indreprodukt pa tangentrommet i hvert punkt.
Metrikken gir oss lokale maledata som vinkler,
buelengder, areal og volum.

Gromov har fgrt den matematiske arven til Rie-
mann videre. Han introduserte i 1980-arene det
som na kalles Gromov-Hausdorff-avstand mellom
to metriske rom. Avstanden males ved a legge de
to rommene inn i et tredje, stgrre rom og sa gjgre
sammenlikningen der. Gromov beviste to funda-
mentale resultater for denne konstruksjonen, et
prekompakthetsteorem og et konvergensteorem.

Symplektisk geometri

Komiteen sier: Gromov er en av grunnleggerne
av symplektisk geometri. Det var kjent at holo-
morfe kurver var et viktig verktpy i studiet av
komplekse mangfoldigheters geometri. Imidler-
tid var det ogsd klart at integrable komplekse
strukturer utgjorde et for rigid rammeverk. I en
bergmt artikkel fra 1985 utvidet Gromov begrepet
holomorfe kurver til J-holomorfe kurver pa sym-
plektiske mangfoldigheter. Dette ledet til teorien
for Gromov-Witten-invarianter, som nd utgjpr et
ekstremt aktivt forskningsomrade knyttet til mod-
erne kvantefeltteori. Det ledet ogsd til etablerin-
gen av feltet symplektisk topologi og har gradvis
trengt inn i og omformet mange andre omrdder av
matematikken.

Ordet “symplektisk” er inspirert av ordet “com-
plex”, og introdusert av Hermann Weyl; tidligere
hadde ’symplektiske grupper” blitt kalt "linjekom-
plekse grupper”. Ordet kompleks kommer fra lat-
in com-plexus, som betyr “flettet sammen” (co- +
plexus), mens sympektisk kommer fra det tilsvar-
ende greske ordet sym-plektos (CUUTAEXTIROG); i
begge tilfeller kommer den siste stavelsen fra den
indo-europeiske stavelsen *plek-. Navnsettingen
reflekterer en dyp sammenheng mellom komple-
kse og symplekse strukturer.

Symplektisk geometri er grenen av differensial-
geometri hvor objektene som studeres er sym-
plektiske mangfoldigheter. En symplektisk man-
gfoldighet er en differensiabel mangfoldighet
utstyrt med en lukket, ikke-degenerert 2-form.
Symplektisk geometri har sin opprinnelse i den

Hameltonske formalismen for klassisk mekan-
ikk, der faserommet til et bestemt fysisk system
pa en naturlig mate antar en symplektisk struk-
tur. Symplektisk geometri har mange fellestrekk,
men skiller seg samtidig pa vesentlige omrader
fra Riemannsk geometri. I motsetning til det
Riemannske tilfellet har symplektisk geometri
ingen lokale invarianter som f.eks. krumning. En
annen forskjell er at ikke alle mangfoldigheter
tillater en symplektisk struktur, det er visse to-
pologiske begrensninger. Den viktigste er at en
symplektisk mangfoldighet ma vere av jevn di-
mensjon og orienterbar. Symplektsik geometri
kalles ogsa symplektisk topologi, selv om sym-
plektisk topologi egentlig er det underomradet
hvor man studerer globale spgrsmal innen sym-
plektisk geometri.

Gromov utnyttet eksistensen av en nesten kom-
pleks struktur pa symplektiske mangfoldigheter
til & utvikle teorien for pseudoholomorfe kurver.
Denne teorien ga stgtet til en rekke resultater
innen symplektisk geometri, bla. oppdagelsen
av det som na kalles Gromov-Witten-invari-
anter. Disse invariantene spiller en viktig rolle
i strengteori.

Grupper med polynomiell vekst

Komiteen sier: I sine studier av grupper av poly-
nomiell vekst lanserte Gromov ideer som for
alltid har forandret vdar oppfattelse av diskrete
uendelige grupper. Gromov oppdaget at diskrete
grupper kan gis en geometrisk tolkning og lpste
flere problemer av sentral betydning. Hans geo-
metriske tilncerming gjorde innviklede kombina-
toriske argumenter mye mer naturlige og kraft-
fulle.

Innen gruppeteori betegner begrepet vekstrate
til en gruppe med hensyn pa en symmetrisk
generatormengde veksten i antall “ord” i gen-
eratorene av gkende lengde. Elementene i grup-
pa kan skrives som produkt av generatorer og
vekstraten sier noe om hvor fort antall elementer
som kan skrives som et produkt av lengde n gker
med gkende n.

Gromov beviste fglgende teorem:
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Teorem (Gromov 1981). SAGT OM MIKHAIL GROMOV
En endelig-generert gruppe G har polynomiell (og av Mikhail Gromov)

vekst hvis og bare hvis den er virtuelt nilpotent.
Marcel Berger mente at Mikhail Gromovs arbei-
der bgr leses sa grundig at sidene til slutt faller
fra hverandre.

Det a ha polynomiell vekst er en geometrisk
egenskap ved Cayley-grafen til gruppa, mens det

a vere nilpotent er en rent algebraisk egenskap. Dennis Sullivan om Mikhail Gromov: Det er

Det er ikke vanskelig & vise at nesten nilpotente ufattelig hva Mikhail Gromov kan f& ut av trekan-
grupper har polynomiell vekst; den vanskel- tulikheten.

ige implikasjonen er den motsatte, og Gromov
trengte a introdusere flere nye geometrlsk be-
greper for & bli i stand ;
til & oversette den ge-
ometriske informasjo-
nen til algebraiske kon-
klusjoner. Ideene hans
har 1 ettertid etablert
seg som basiskunnskap
for ulike strategier for a
lgse vanskelige proble-
mer innenfor dette omradet.

Fra begrunnelsen for tildelingen av Nemmerspris-
en i matematikk: Mikhail Gromovs arbeider har
revolusjonert flere grunnleggende delomrader av
moderne geometri.
Fra begrunnelsen for tildelingen av Balzan-
prisen for Matematikk: Prisen gadr til Mikhail
Gromov for hans mange originale og dype bidrag
innen ulike felt av geometri, og for mdten han har
anvendt disse bidragene innen andre omrdder av
matematikk og teoretisk fysikk.
Fra begrunnelsen for tildelingen av Leroy P. Steele
Prize for Seminal Contribution to Research:
Mikhail Gromovs artikkel, Pseudo-holomorphic
curves in symplectic manifolds fra 1985, revo-
lusjonerte fagfeltene symplektisk geometri og
topologi, og er sentral i mange forskningsfelt,
bla. kvantekohomologi og speilsymmetri.
Fra begrunnelsen for tildelingen av Kyotoprisen in-
nen matematiske vitenskaper: Mens matematikere
for han studerte intrinsike egenskaper ved rom
valgte Mikhail Gromov en helt ny og innova-
tiv angrepsvinkel. Han studerte avstanden mel-
. lom ulike rom og klassifiserte dem i “neere” og
: “fjerne”. Det ga opphav til en dypere forstdelse
e - av rommene selv, siden man nd hadde et verk-
' tpy til a sammenligne.Gromov har klart a lpse
7 mange problemer med denne metoden, spesielt
. 1 de som dreier seg om relasjoner mellom den glo-
| m ﬂ bale strukturen til rommet og dets krumning, og i
hvilken grad rommet er lokalt krumt.
Mikhail Gromov til Marcel Berger: De som
—— leser mine arbeider har en tendens til a se pad
korollarene og noen ganger ogsd pad det tekniske
innholdet i bevisene, men det er sjelden de studerer
papirene sd ngye at de far tak i de bakenforliggende
ideene.
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EN LITEN OVERSIKT OVER GRO-
MOVS MATEMATIKK

Riemannsk geometri

Gromovs hovedinteresse ligger innenfor fagfeltet
differensialgeometri. Differensialgeometrierden
delen av geometri der objektene man studerer er
glatte og gjerne krumme, slik som kurver, flater
eller hgyere-dimensjonale mangfoldigheter. Ob-
jektene kan gjerne ha en tilleggsstruktur, f.eks.
en Riemannsk metrikk. En Riemannsk metrikk
pa en flate er akkurat det ekstra verktgyet vi
trenger for & kunne male avstander og vinkler pa
flaten. En flate med en Riemannsk metrikk kalles
en Riemannsk flate. Den vanligste metrikken pa
en flate er den Euklidske metrikken, og bak det
navnet skjuler seg vart vanlige avstandsbegrep.

Men la oss na forestille oss at flaten er en del av
et landskap og at metrikken uttrykker hvor tungt
det er a bevege seg i enhver retning i ethvert
punkt pa flaten. I myrlendt omrade er verdien av
metrikken stor sammenliknet med omrader med
fast grunn. Forskjellige verdier av metrikken i
forskjellige retninger i ett og samme punkt kan
ogsa forekomme, igjen avhengig av grunnen. En
avstand mellom to punkter i denne metrikken gir
oss et uttrykk for hvor lang tid eller hvor mye
krefter vi bruker pa a bevege oss mellom de to
punktene.

Et av de mest funda-
mentale begrepene hva
gjelder Riemannske
flater er den sakalte
Gausskrumningen  til
flaten. Begrepet ble fgrst
studert av Leonhard
Euler (1707-1783), men
det var Carl Friedrich

Gauss (1777-1855) som utviklet teorien. Et plan
med den vanlige Euklidske metrikken har ingen
Gausskrumning, mens samme planet med hvor-
vanskelig-er-det-a-ga-metrikken som beskrevet
ovenfor, kan vere ganske krumt! I dag finnes det
mange krumningsbegreper og -definisjoner, og
alle har som sin hovedoppgave a male hvor langt
et rom er fra a vare flatt.

Gausskrumningen i et punkt pa en flate er definert
som produktet av hovedkrumningene i punktet,
summen av dem kalles middelkrumningen. Hoved-
krumningene er maksimums og minimumsverdi-
ene av krumningen til de plane kurvene vi far nar
vi snitter flaten med plan som star normalt pa tan-
gentplanet i punktet.

De viktigste egenskapene til en flate er de som er
definert intrinsikt, dvs. definert kun gjennom av-
stander pa flaten som er malt langs kurver pa flaten.
Flater blir ofte definert som grafen til en funksjon
i to variable og fgr Gauss definerte man krumn-
ing ved hjelp av denne funksjonen. Egenskaper
ved flaten som er definert pa denne maten kalles
ekstrinsike, det motsatte av intrinsike. Gauss viste
i sitt Theorema Egregium (“Oppsiktsvekkende
teorem”) at til tross for den opprinnelige ekstrin-
sike definisjonen, sa er
Gausskrumning en
intrinsik ~ egenskap.
Bernhard  Riemann
(1826-1866) general-
iserte dette til hgyere
dimensjoner og la
med det grunnlaget
for det som i dag ka-
lles Riemannsk ge-
ometri.

Den franskitalienske
matematikeren Joseph-
Luis Lagrange (1736-1813) stilte 1 1760 fglgende
spgrsmal: Gitt en lukket kurve i rommet, hvordan
ser flaten ut som har denne kurven som sin rand
og som har minimalt areal? En slik flate kalles
en minimalflate. Svaret pa spgrsmalet ble gitt av
den litt mer ukjente matematikeren Jean Baptiste
Meusnier (1754-1793) 16 ar senere. Han viste at
en flate er minimal hvis og bare hvis middelkrum-
ningen til flaten er 0. Minimalflater opptrer pa en
naturlig mate i naturen. Ved & dyppe en staltrad
formet som den aktuelle kurven ned i sapevann,




vil sapefilmen som dannes nar vi tar traden opp
av vannet beskrive minimalflaten som svarer pa
spgrsmalet.

Kurver pé en flate som er slik at de danner den
korteste veien mellom sine endepunkter kalles
geodesiske kurver. De svarer til rette linjer 1 et
euklidsk rom. Matematisk beskrives de gjennom
partielle differensiallikninger som oppstar fra
sakalt variasjonsregning og de er intrinsikt de-
finert, dvs. uavhengig av rommet som flaten er
puttet inn 1.

En mate & definere Gausskrumning i et punkt er a
se pa grenseverdien for kvotienten av avviket mel-
lom vinkelsummen o + § + Y og 7, og arealet av
sukssesivt mindre og mindre geodesiske trekant-
er, med vin-
kler o, 3,y og
som omslut-
ter punktet.
Kvalitativt
sier vi at flat-
en er positivt
eller negativt
krummet 1
henhold til
tegnet pa dif-
ferensen a +
B+ vy — mfor
sma trekanter. En kuleflate har overalt positiv
krumning siden vinkelsummen i en trekant pa
jordoverflaten er stgrre enn 7T, mens plangeometri
ikke krummer siden vinkelsummen som kjent er
meller 180 grader 1 det tilfellet.

Siden en Riemannsk flate har en veldefinert
krumning 1 hvert eneste punkt, har det mening
a summere opp alle krumningene for a finne
gjennomsnittskrumningen for hele flaten, eller

totalkrumningen som den kalles 1 litteraturen.
Totalkrumningen er beskrevet i et vakkert re-
sultat, kjent som Gauss-Bonnet-teoremet. Re-
sultatet sier at totalkrumningen kan beregnes
kun ved hjelp av topologiske egenskaper til flat-
en,dvs. uten verken a kjenne
krumning eller metrikk. For
en lukket flate, slik som
kuleflaten eller overflaten til
en smultring, kjent som en
torus, sier Gauss-Bonnet at
den totale krumningen er lik
47 minus 4w ganger antall
hull i flaten. Kuleflaten har ingen hull og den
totale krumningen er derfor lik 4, for gvrig
samme tall som arealet til kuleflaten nér radius
er satt til & veere 1. Torusen har ett hull og den
totale krumningen er derfor 0. Denne relasjonen
mellom det lokale begrepet krumning og det
globale begrepet antall hull har vert forlgper
for mange viktige resultater i geometri, med
Atiyah-Singers indeksteorem som det absolutte
hgydepunkt. Michael Atiyah og Isadore Singer
fikk Abelprisen for dette resultatet i 2004.

Etter hvert som man utvikler mer matematikk
dukker det opp nye spgrsmal og problemstill-
inger. I den gaten vi na er inne i kom raskt
spgrsmalene opp om hva slags flater det er
mulig a konstruere dersom vi krever at krum-
ningen er null overalt, eller hvis den er konstant
og positiv eller konstant og negativ? Svarene
pa disse spgrsmalene vil hjelpe oss med a klas-
sifisere alle flater. Mikhail Gromov har vert
en svart aktiv bidragsyter i dette arbeidet og
har gjennom sine resultater pa en fremragende
mate styrket var kunnskap om flater og hgyere-
dimensjonale mangfoldigheter.

Riemannske geometere begrenser seg pa ingen
mate til a studere flater. Universet vart kan be-
skrives som et tre-dimensjonalt rom. I nerheten
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av jorda ser dette rommet ut som et Euklidsk rom,
dvs. at rette linjer er rette linjer, hvis vi kan formu-
lere det slik. Andre steder i universet, i naerheten
av kjempestjerner eller sorte hulle er dette langt 1
fra tilfellet. Gjennom Hubble-teleskopet har man
observert fjerne punkter hvor det ikke bare er én
geodesisk kurve mellom punktene og Hubble-tel-
eskopet, men et helt knippe av slike. Dette kalles
gravitasjonal brytning og er en avansert form for
dobbelsyn. Ett og samme punkt opptrer tilsynela-
tende flere ganger pa himmelhvelven nar vi ser
pa det i teleskopet. Bakgrunnen for fenomenet er
at vart rom er krumt og ved a kombinere astrono-
miske observasjoner med teoretiske resultater fra
Riemannsk geometri kan vi beregne stgrrelsen
pa denne krumningen. Astronomene forestiller
seg at krumningen
av rommet er re-
latert til gravitas-
jonsfeltene  rundt
kjempestjernene
eller de sorte hul-
lene 1 henhold til
en partiell differ-
ensiallikning  in-
trodusert av Albert
Einstein (1870-
1955). Dermed kan
man faktisk bereg-
ne massen til de sorte hullene som forarsaker den
gravitasjonale brytningen.
Som nevnt ovenfor kan man lage mange forskjel-
lige metriske strukturer pa én og samme flate.
Gromov stilte seg spgrsmalet om det er mulig a
finne alle slike strukturer og til og med gi denne
mengden noen form for struktur. Svaret hans er at
mengden av alle metriske rom selv er et metrisk
rom. Vi kan altsa definere en avstand mellom to
ulike metriske rom. Gromov gjgr dette ved a legge
de to rommene vi skal sammenlikne inn i et felles
stgrre rom og sa maler han
avstanden mellom dem
der. Avstanden mellom to
kompakte delmengder av et
metrisk rom er gitt som den
minste lengden som er slik
at vi fra et vilkarlig punkt
1 den ene mengden alltid
kan na den andre mengden.

Gromov-Hausdorff-avstanden mellom to me-
triske rom er akkurat denne minste lengden
nar vi optimaliserer det a legge rommene inn i
et tredje stgrre rom. Som et eksempel kan vi se
pa to sirkler med radius 1 og 2. Det er mange
mater a tegne disse sirklene pa et ark, men lar
vi de fa felles sentrum sa vil avstanden mel-
lom dem vere 1. Fra et hvert punkt pa den ene
sirkelen kan vi nd den andre med en rett linje
av lengde 1. Dermed blir Gromov-Hausdorff-
avstanden mellom de to sirklene lik 1. Rundt
1980 publiserte Gromov en rekke resultater
om det metriske rommet av metriske rom. To
av resultatene barer ogsa hans navn, Gromovs
kompakthetsteorem og Gromovs konvergen-
steorem.

Symplektisk geometri

I 1833 introduserte den irske matematikeren
William Rowan Hamilton (1805-1865) det
som i dag kalles Hamiltonsk mekanikk. Det er
en mate a reformulere klassisk mekanikk etter
Newton, motivert av en tidligere reformuler-
ing som Lagrange sto for i 1788. For Lagrange
var klassisk mekanikk gitt som Igsningen av
en bestemt andre-ordens differensiallikning pa
et aktuelt koordinatrom. Hamilton endret for-
malismen, ved at han sa pa to sett av koordi-
nater, posisjon og momentum, med hvert sitt
sett av koordinater. Lagranges andre-ordens
differensiallikning pa et n-dimensjonalt rom
ble na erstattet av to fgrste-ordens likninger pa
et 2n-dimensjonalt faserom. Egenskaper ved
dette faserommet ble rendyrket og brukt som
motivasjon til a definere sympektiske man-
gfoldigheter. Eller i matematisk sprakdrakt,
som mangfoldigheter utstyrt med en ikke-de-
generert lukket differensiabel 2-form.

Det er nere forbindelseslinjer mellom sym-
plektiske strukturer og det som kalles nesten
komplekse strukturer. Sammenhengen ligger i
spgrsmalet; er det mulig a forsta en 2n-dimen-
sjonal reell mangfoldighet som en n-dimen-
sjonal kompleks mangfoldighet, pa samme
mate som de komplekse tallene kan oppfattes
som et to-dimensjonalt reelt rom?

La oss dvele litt ved en liten digresjon, pin-
neleken til velkjente Ole Brumm. Sammen
med vennene sine kaster han pinner i elva fra
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den ene siden av brua og sa Igper de til den andre
siden for a se hvilken pinne som kommer fgrst.
Strgmmen i elva kan beskrives ved et bestemt vek-
torfelt, til hvert punkt pa vannoverflaten tilordner
vi en vektor som beskriver strgmmens retning og
styrke. Pinnene fglger
dette vektorfeltet
langs det som kalles
integralkurver.  For
Ole Brumm er det om
a gjgre a finne den
raskeste veien, eller i
det minste en raskere
vei enn det Christo-
pher Robin, Tiger-
gutt og Tussi finner.
Uansett er det opplagt
at pinnen finner veien
til den andre siden av
brua. Grunnen til det er at strgm-vektorfeltet har
helt spesielle, og meget hensiktsmessige egenska-
per. Vi kan etterape disse egenskapene, i fagter-
minologien kalt Cauchy-Riemanns likninger, og
anvende dem pa det symplektiske faserommet for
Hamiltonformalismen vi beskrev over. Det vi da
far er en spesiell mate & legge de komplekse tallene
inn i en symplektisk mangfoldighet; de beskriver
en type kurver som kalles J-kurver eller pseudo-
holomorfe kurver. Disse kurvene ble introdusert av
Gromov i 1985 og revolusjonerte studiet av sym-
plektiske mangfoldigheter. Spesielt ga de opphav
til Gromov-Witten-invarianter og Floer-homologi
og spiller en prominent rolle i strengteori, kanskje
det hotteste feltet i teoretisk fysikk de siste arene.

Geometriske grupper
I begrunnelsen for arets Abelpristildeling legger

den faglige komiteen spesielt vekt pa tre om-
rader hvor geometeren Gromov har spilt en
framtredende rolle. Riemannsk og symplektisk
geometri kan man forsta hgrer med til tumle-
plassen for en av verdens ledende geometere,
men hva har polynomial vekst av grupper med
geometri a gjgre?

Vi skal avdekke en forbindelse, og vi begyn-
ner med 4 stille spgrsmalet om hvor mange ord
spraket vart inneholder? Det er selvfglgelig in-
gen god ide a starte a telle ord i et sprak, men
likevel, la oss forsgke. Vi starter med a betrakte
ord av lengde 1, slik som i, ¢ og a. Hvis vi er litt
strenge med hva vi mener med et ord sa er det
vel ikke flere enn disse. Lista over ord av lengde
to er mye lenger; vi har to, ku, s&, ta og hi for
a nevne noen. Vi skal ikke fortsette pa disse
listene, vi skal heller forandre spillereglene og
fokusere pa et sprak som viser seg a inneholde
en veldig viktig matematisk konstruksjon. Her
er reglene:

1. Alfabetet inneholder kun to bok-
staver, X og y.

2. Alle kombinasjoner av x“er og y’er
er ord i dette spraket, med to unntak,
kombinasjonene xx og yyy skal ikke
forkomme.

La oss na telle antall ord i ordboken. Vi teller
opp ord av samme lengde, og begynner med 1.
I tabellen under har vi listet alle de korteste or-
dene, sortert etter lengde. La na W(n) betegne
antall ord av lengde n. Et elementart kombina-
torisk argument (som vi utelater av plasshen-
syn) gir at W(n) er lik summen W(n-1)+W(n-5).
Det gir oss en enkel oppskrift pa a fortsette den

Lengde | Ord W(n)
1 X,y 2
2 Xy, YX, VY 3
3 XyX, YYX, yXy, Xyy 4
4 XYXY, XyyX, YXyX, YXyY, YYXy 5
5 XYXYX, XYXYyY, XYYXY, YXTYXY, YXYYX, YYXYX, YYXYy 7
0 XYXYXY, XYXYYX, XYYXYX, XYYXYY, YXYXYX, YXYXYY, YXYYXY, YYXYXY, YYXyyXx |9
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hgyre tallrekken 1 tabellen: 2,3,4,5,7,9,12,16,21
,28,37,49.,65,... Denne tallfglgen har eksponen-
tiell vekst. Det motsatte av eksponentiell vekst
er 1 denne forbindelse polynomial vekst. Poly-
nomial vekst er mye langsommere enn ekspo-
nentiell vekst, f.eks. har fglgen av naturlige tall,
1,2,34,5,6,7,... polynomial vekst.

Spraket som vi har beskrevet over er det som i
matematisk terminologi kalles elementene i den
Projektive modulare gruppa, PSL(2,Z). Det vi
har vist, eller i det minste antydet, er at denne
gruppa har eksponensiell vekst. La oss minne om
Gromovs resultat fra 1981:

Teorem (Gromov, 1981)

En endelig generert gruppe G har polynomial
vekst hvis og bare hvis gruppa er virtuelt nilpo-
tent.

Ved & bruke dette resultatet kan vi nd utlede at
den projektive modul@re gruppa ikke er virtuelt
nilpotent. Dvs. at den ikke inneholder en nilpo-
tent undergruppe av endelig indeks. For grup-
peteoretikere er det viktig & vite om en gruppe
er virtuelt nilpotent eller ikke. Det vi gnsker a
fortelle med dette er at ved a kombinere enkel
telling med Gromovs resultat kan vi uttale oss
om betydningsfulle egenskaper til PSL(2,7), en
av de mest bergmte gruppene i moderne matem-
atikkhistorie.

Sa tilbake til vart opprinnelige spgrsmal, om hva
dette har med geometri a gjgre. Det er faktisk en
metrikk gjemt i vart sprak-eksempel. Begrepet
avstand har to helt grunnleggende egenskaper
som vi ikke far lov a fravike, trekantulikheten
og ekvivalensen mellom null-avstand og likhet.
Trekantulikheten er en generalisering av det mer
folkelige utsagnet om at den korteste veien mel-
lom to punkter er den rette linje. Ekvivalensen
mellom null-avstand og likhet sier at dersom det
ikke er noen avstanden mellom to punkter sa er
de like. I det omtalte spriaket har det mening a
sette sammen ord, ved & sette dem etter hveran-
dre. Det at xx og yyy ikke er tillatt skal vi forsta
dithen at dersom vi setter sammen to ord og en av
disse kombinasjonene blir resultatet i “skjgten”,
sa stryker vi dem. For eksempel vil sammenset-
ningen av XyX 0g Xyyx gi XyXxXyyX=xyyyx=xx=@
(vi kaller det tomme ordet for @). Vi ma ogsa

kunne invertere et ord, det gjgr vi ved a snu or-
det bak fram og erstatte yy med y og omvendt;
for eksempel vil den inverse til xyyxy vare
yyxyx. Den oppsiktsvekkende erkjennelsen er
nd at mengden av ord i dette alfabetet pa en
naturlig mate former et metrisk rom. Avstand-
en mellom to ord definerer vi ved a sette sam-
men det ene ordet med den inverse av det an-
dre og sa telle opp antall bokstaver i resultatet.
Denne definisjonen respekterer bade trekantu-
likheten og ekvivalensen mellom null-avstand
og likhet. Opptelling av punkter innen en gitt
avstand fra det tomme ordet er i perfekt analo-
gi med det a beregne arealet av sirkler med
den samme avstanden fra et bestemt punkt pa
en flate. Areal er en kvadratisk funksjon i ra-
diusen, dvs. for flater har vi polynomial vekst
av grad 2. Tilsvarende argument kan vi bruke
for generelle Riemannske mangfoldigheter av
hgyere dimensjon, dersom dimensjonen er d
vil veksten i volum i d-baller om et punkt vaere
en polynomial funksjon av grad d i radiusen til
ballen. Igjen har vi polynomial vekst. Gromovs
resultat kan i denne sammenhengen oppfattes
a uttale seg om egenskaper ved algebraiske ob-
jekter svarende til endelig-dimensjonale man-
gfoldigheter.

Epilog

Gromovs navn er for alltid knyttet opp mot
dype resultater og viktige begreper innen
Riemannsk geometri, symplektisk geometri,
strengteori og gruppeteori. Abelkomiteen sier
i sin begrunnelse: "Mikhail Gromov er alltid
pa leting etter nye spgrsmal og etter nye svar
pa gamle spgrsmal. Han har gjennom hele sin
karriere produsert dype og originale arbeider
og han er fortsatt bemerkelsesverdig aktiv.
Gromovs arbeider vil fortsette & vere en kil-
de til inspirasjon for framtidige matematiske
oppdagelser.” Gromov er matematikeren som
far store resultater ut av

enlke ideer. Som Den-

nis Sullivan sa treffend

uttaler: ”"Det er utrolig

hva Mikhail Gromov c

kan fa ut av trekantu-

likheten!” b

a+b>c



